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1 A new solution to an old problem
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We will consider a positive integer number m which will be implied and will not
appear in the symbols adopted but which can be chosen as desired. It will be
m = p + 1 because the exponents considered will go from 0 to p. For example
for m=6 we have:

.

1
>k k! j
j iV G) =

[ BNV V)
S Ut s W N
<u
—~
=
=
|
coocoom

J
J
J
J

Naturally for any m chosen it will result: >, _; V (k) = S(n) Knowledge of the
development of Newton’s binomial and the row-column product is sufficient to
understand the following easily generalizable identity:

j—(G-1) 1 0 0 0 0 0] [1
2 —(j —1)? -1 2 0 0 0 0f |J
P-G-1% |1 -3 3 0 0 0] |52
A—-G-D* " |-1 4 -6 4 0 0] |43
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= ((G-1)° -1 6 -15 20 -—15 6| |5°

By decomposing the first member vector of this identity and indicating the
matrix with alternating signs obtainable from the Pascal triangle with A we
can generalize this identity by writing:

VG =G =DV - 1) = AV())
adding member to member for ¢ from 1 to n and simplifying (telescopically) the

opposites we get:
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nV(n) — 0V (0) = 4> V(j)
k=1

nV(n) = AS(n)

from which multiplying the two sides of the equation on the left by the inverse

matrix we obtain: )

S(n) =4 nV(n)

Example 1 Choosing m=11 and inverting the matriz A we obtain the famous
polynomials published in 1713 in Ars Conjectandi:
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